Original Article

Functional disconnection in the prefrontal–amygdala circuitry in unaffected siblings of patients with bipolar I disorder


Objectives: Bipolar I disorder (BD) is a highly inheritable disorder characterized by mood swings between high-energy and low-energy states. Amygdala hyperactivity and cortical inhibitory hypoactivity [e.g., of the dorsolateral prefrontal cortex (dlPFC)] have been found in patients with BD, as evidenced by their abnormal resting-state functional connectivity (FC) and glucose utilization (GU). However, it has not been determined whether functional abnormalities of the dlPFC–amygdala circuit exist in unaffected, healthy siblings of the patients with BD (BDsib).

Methods: Twenty euthymic patients with BD, 20 unaffected matching BDsib of the patient group, and 20 well-matched healthy control subjects were recruited. We investigated seed-based FC (seeds: dlPFC) with resting-state functional magnetic resonance imaging and GU in the regions of interest (e.g., dlPFC and amygdala) using $^{18}$F-fluorodeoxyglucose positron emission tomography.

Results: The FC in the dlPFC (right)–amygdala circuit was statistically abnormal in patients with BD and BDsib, but only the patients with BD demonstrated hypoactive GU bilaterally in the dlPFC and hyperactive GU bilaterally in the amygdala. Facilitating differentiation between the BD groups, the altered FC between dlPFC (right) and amygdala (left) was even more prominent in the patients with BD ($p < 0.05$).

Conclusions: There was a dysfunctional connection with intact GU in the dlPFC–amygdala circuit of the BDsib, which highlights the vulnerability in families with BD. Diminished top-down control from the bilateral dlPFC, which prevents adequate inhibition of limbic hyperactivity, might mediate the development of BD.

Bipolar I disorder (BD) is a highly inheritable disorder characterized by mood swings between extremely high-energy (mania) and low-energy (depression) states. Such mood fluctuations could be an expression of the emotional dysregulation at the root of BD.

A dorsal system, including bilateral dorsal and lateral regions of the prefrontal cortex (PFC), is predominantly responsible for voluntary emotion regulation, and a ventral system, including the amygdala and ventral regions of the PFC, is involved in the identification of emotionally salient...
stimuli and mediation of autonomic responses to stimuli (1). An imbalance between these two neural systems has been proposed to be an underlying mechanism that predisposes people to develop BD (2).

Reduction in the inhibitory function of the PFC [e.g., dorsolateral PFC (dIPFC)] and overactivity in the subcortical limbic regions (e.g., amygdala, parahippocampus, and hippocampus) have been repeatedly reported in functional neuroimaging studies of BD (3–9). Even in resting states, activities in these brain regions are still abnormal in patients with BD. For example, we recently reported that euthymic patients with BD had significantly lower glucose utilization (GU) in the PFC, and higher GU in the limbic structures, as measured by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) (10). The study also identified that, compared to bipolar II disorder (BD-II), bipolar I disorder (BD-I) was associated with more impaired fronto-limbic circuitry (10).

Similarly, the resting-state functional abnormality in the fronto-limbic circuit was revealed by research using task-independent resting-state functional magnetic resonance imaging (fMRI) (rsfMRI). rsfMRI investigates intrinsic low-frequency fluctuations between connected brain structures that may represent a functional connectivity (FC) network of the brain in the resting state (11). The results from rsfMRI have demonstrated functional disconnectivity in the frontoamygdala circuitry of euthymic patients with BD (5, 12), in spite of some variations in the findings. A recent study examined the connectivity between the amygdala and all PFC voxels in a large sample, and found that patients with BD-I exhibited disconnectivity between the amygdala and right-side dIPFC (5). The dIPFC region is also involved in an intrinsic connectivity network that is reliably identified by rsfMRI, namely an executive control network (ECN). The ECN has been shown to correlate well with cognitive functions measured outside the scanner (13).

Taken together, all of the relevant evidence supports that, during the resting state, functional abnormalities in the dIPFC–amygdala circuit could be an endophenotype of BD, and also the idea that neuroimaging tools should be used to elucidate biomarkers for diagnosing BD (14). We hypothesized that patients with BD and their unaffected, healthy siblings (BDsib) would exhibit similar functional abnormalities in the dIPFC–amygdala circuit as an endophenotype is heritable and might be found both in affected and unaffected family members.

Therefore, we compared resting-state functional abnormalities in the dIPFC–amygdala circuit among a group of euthymic patients with BD, a group of matched BDsib of the patient group with BD, and a group of well-matched healthy control subjects (HC). Brain imaging scans, including rsfMRI and 18F-FDG PET, were obtained at rest, while participants were medication free. The combination of the neuroimaging scans allowed us to disentangle the functional abnormalities of BD from different angles. The 18F-FDG PET scans explored brain regional functional abnormalities at rest, whereas the rsfMRI further examined intrinsic FC patterns between brain regions during the resting state. We also investigated whether impaired executive functioning could be an endophenotype for BD as it was observed in the unaffected relatives of patients with BD (15–17). The correlations of the neuroimaging abnormalities and the cognitive deficits were explored. The reasons why we selected only patients with BD-I were because sometimes it is hard to differentiate other subtypes of BD (e.g., BD-II) from major depression and because BD-I has a high heritability, with a heritability estimate of 0.93 (18).

Methods and materials

Participants

Sixty subjects were recruited for the present study, including 20 clinically stable patients with BD, 20 unaffected BDsib from the same families of the patients with BD, and 20 age-, gender-, and ethnicity-matched HC (Table 1). The diagnoses were established by a structured history taking and administration of the Mini-International Neuropsychiatric Interview (MINI) based on the Fourth Edition of the Diagnostic and Statistical Manual system (DSM-IV) criteria (American Psychiatric Association, 1994). Patients were recruited only if they had no history of major medical or neurological illness (e.g., epilepsy, head trauma, or stroke) and had no alcohol or substance abuse history in the previous year. As medication could be a confounding factor in the interpretation of behavioral and neuroimaging data, we recruited only those who had been medication free for at least one week. The study was performed in accordance with the Declaration of Helsinki and was approved by the Ethics Review Committee of Taipei Veterans General Hospital (for additional details, please refer to the online supplementary material).
Imaging studies

**rsfMRI. Imaging acquisition parameters.** MR images were acquired using a 3.0 GE Discovery 750 whole-body high-speed imaging device. In brief, the resting-state functional images were collected using a gradient echo T2*-weighted sequence [repetition time (TR)/echo time (TE)/flip angle = 2,500 msec/30 msec/90°], and high-resolution structural T1-weighted images were acquired in the sagittal plane using a high-resolution sequence (TR = 2,530 msec, echo spacing = 7.25 msec, TE = 3 msec, flip angle = 7°) with isotropic 1-mm voxels and field-of-view (FOV) = 256 x 256 mm (for additional details, please refer to the online Supplementary material).

**Analysis of resting state FC.** FC pre-processing: the motion-corrected functional scans underwent slice timing and motion correction and were registered to the Montreal Neurological Institute (MNI152) atlas using the Functional MRI of the Brain Software Library (www.fmrib.ox.ac.uk/fsl). The following additional preprocessing steps, which have been described in previous reports (19), were used to prepare the data for FC analysis: (i) spatial smoothing using a Gaussian kernel (6-mm full-width at half-maximum), (ii) temporal filtering (0.009 Hz < f < 0.08 Hz), and (iii) removal of spurious or nonspecific sources of variance by regression of the following variables: (i) the six movement parameters computed by rigid body translation and rotation in preprocessing, (ii) the mean whole-brain signal, (iii) the mean signal within the lateral ventricles, and (iv) the mean signal within a deep white matter region of interest (ROI). The first temporal derivatives of these regressors were included in the linear model to account for the time-shifted versions of spurious variance. The regression of each of these signals was computed simultaneously, and the residual time course was retained for the correlation analysis.

**FC analysis:** the ECN of each participant was derived from the ROIs in the left and right dlPFC by conducting a seed-based FC analysis (20). In brief, we computed a seed-based dlPFC correlation map by extracting average time series across all voxels in the dlPFC of each subject, which were then correlated with all other brain voxels. Fisher’s r-to-z transformation was used to convert the voxel-wise correlation maps into z-maps. The significant difference of the z-maps between the patients with BD and HC was evaluated using an independent t-test (Supplementary Fig. 1). Brain regions that passed a voxel-level uncorrected p-value < 0.001 were identified and then submitted for corrections of multiple comparisons. For the bilateral amygdala (i.e., our a priori regions), we used AlphaSim, with exact smoothness estimates computed from the general model residuals (p < 0.001, Monte Carlo simulations = 10,000 times, kE = 17 voxels for amygdala) to correct for type-I errors (5). The method is primarily based on

---

**Table 1. Demographic data and clinical variables of the three groups**

<table>
<thead>
<tr>
<th>Variables</th>
<th>BD</th>
<th>BDsib</th>
<th>HC</th>
<th>F/χ²</th>
<th>p-value</th>
<th>Post hoc (LSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, mean (SD)</td>
<td>41.6 (11.3)</td>
<td>40.6 (10.5)</td>
<td>41.8 (10.6)</td>
<td>0.265</td>
<td>0.768</td>
<td>–</td>
</tr>
<tr>
<td>Male/female, n</td>
<td>14/6</td>
<td>11/9</td>
<td>13/7</td>
<td>1.000</td>
<td>0.665</td>
<td>–</td>
</tr>
<tr>
<td>Educational levels, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7–9 years (junior high)</td>
<td>1 (5)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>10.281</td>
<td>0.113</td>
<td>–</td>
</tr>
<tr>
<td>10–12 years (senior high)</td>
<td>10 (50)</td>
<td>5 (25)</td>
<td>3 (15)</td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>13–16 years (college)</td>
<td>9 (45)</td>
<td>13 (65)</td>
<td>16 (80)</td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>&gt;16 years (graduate)</td>
<td>0 (0)</td>
<td>2 (10)</td>
<td>1 (5)</td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>HDRS-17 score</td>
<td>4.7 (3.4)</td>
<td>0.7 (1.1)</td>
<td>1.0 (1.4)</td>
<td>19.020</td>
<td>&lt;0.001</td>
<td>BD &gt; BDsib</td>
</tr>
<tr>
<td>YMRS score</td>
<td>3.6 (3.1)</td>
<td>0.2 (0.7)</td>
<td>0.2 (0.7)</td>
<td>30.746</td>
<td>&lt;0.001</td>
<td>BD &gt; HC</td>
</tr>
<tr>
<td>Age at onset, years, mean (SD)</td>
<td>26.0 (12.1)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Illness duration, years, mean (SD)</td>
<td>16.1 (10.3)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Psychotic features, n (%)</td>
<td>12 (60)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>No. of MDE, mean (SD)</td>
<td>4.4 (3.3)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>No. of hypomanic/manic episodes, mean (SD)</td>
<td>6.1 (6.2)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>No. of mixed episodes, mean (SD)</td>
<td>1.8 (3.6)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>No. of psychiatric admissions, mean (SD)</td>
<td>2.8 (3.2)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

BD = bipolar disorder; BDsib = unaffected, healthy siblings of patients with BD; HC = healthy control subjects; HDRS-17 = 17-item Hamilton Depression Rating Scale; LSD = least significant difference; MDE = major depressive episodes; SD = standard deviation; YMRS = Young Mania Rating Scale.

*Non-parametric Kruskal–Wallis chi-square test was used because the variable showed a lack of homogeneity of variances among groups.*
peak voxels and cluster extent thresholds (21). For other non-*a priori* regions, family-wise errors were adopted to correct for multiple comparisons. The between-group FC values (BD versus HC) in the regions that showed statistical significance were further extracted for all three groups (HC, BD, and BDsib), and one-way analysis of variance (ANOVA) tests were performed on the FC values across the three groups; this analysis was followed by *post hoc* least significant difference (LSD) analyses. The significance level for both was set at a *p*-value < 0.05.

**Positron emission tomography (PET).** PET data acquisition. $^{18}$F-FDG PET scans of at-rest GU were acquired on a PET/computed tomography scanner (Discovery VCT, GE Healthcare, Milwaukee, WI, USA) using the three-dimensional brain mode. The patients fasted for at least eight hours before the PET examination. The PET images were acquired within 45 min after an intravenous injection of approximately 370 MBq of $^{18}$F-FDG. The brain acquisition time was 15 min. Most of the MRI scans and PET scans were done within four days, based on the availability of the machines. The detailed procedures were identical to those in our previously published paper (10).

**PET analysis.** The mean brain glucose uptake values in the ROIs (i.e., dlPFC and amygdala) were extracted from MRI-coregistered PET images in the standard stereotactic space (Fig. 1; for details, please see *Supplementary Material*) using PMOD version 3.0 (PMOD Technologies, Zurich, Switzerland) as we have previously described (22). To prevent bias in the inter- or intra-rater reliability due to manual delineation, an automated anatomical labeling (AAL) template (23) was used to delineate these regions. We report the normalized glucose uptake values in the ROIs; the values were normalized by dividing the glucose uptake values by the global mean uptake values. One-way ANOVA tests were performed on the resting regional cerebral glucose metabolism (rCMglu) values to compare the three groups, and this analysis was followed by *post hoc* LSD analyses. Pearson’s correlation tests were performed to study the correlations between the depression and mania scores and between the cognitive measurements and normalized GU in the ROIs. A *p*-value < 0.05 was deemed to be statistically significant in the correlation and *post hoc* analyses.

**Cognitive measurements**

The Montreal Cognitive Assessment (MoCA) (24) and the Mini-Mental State Examination (MMSE) (25) were used to detect potential cognitive dysfunction in the patients with BD because cognitive deficits in patients with BD when they are in remission could be relatively mild and less prominent than at other times. Both demonstrated good agreement with executive function in the subjects.

---

**Fig. 1.** Delineations of the regions of interest (ROIs) for positron emission tomography (PET) analysis in an individual. Left panel: individual magnetic resonance imaging (MRI) scans were normalized to the standard MRI-T1 template. Four ROIs were predefined, including the left dorsolateral prefrontal cortex (dlPFC) (blue), right dlPFC (pink), left amygdala (yellow), and right amygdala (red). Middle panel: individual PET images were normalized to the standard stereotactic space via coregistration of the anatomical MRI of the subject. Right panel: the glucose uptake in each ROI was extracted from the MRI-coregistered PET images.
with cognitive impairments (e.g., post-stroke) (26). The MoCA was reportedly more sensitive than the MMSE in detecting mild cognitive impairment (24). In addition, the Wisconsin Card Sorting Test (WCST) (27) was adopted to evaluate executive functions as deficits of such executive functions had been reported in euthymic subjects with BD (10) (see online Supplementary materials for additional details regarding the procedures).

Statistical analysis for other variables

For analysis of the demographic data and clinical variables, SPSS 16.0 software (SPSS, Inc., Chicago, IL, USA) was used. One-way ANOVAs (or Student’s t-test) and chi-square tests were used to compare the continuous and categorical variables among the groups, respectively. A p-value < 0.05 was considered statistically significant. Homogeneity of variance was tested using Levene’s test. When this test was significant (or Student’s t-test) and chi-square tests were used to compare the continuous and categorical variables among the groups, respectively. A p-value < 0.05 was considered statistically significant. Homogeneity of variance was tested using Levene’s test. When this test was significant (p < 0.05), the non-parametric Kruskal–Wallis test was applied to variables that failed to pass the homogeneity assumption of ANOVA.

Results

Demographic data and clinical variables

There were no differences in the age, gender, or educational levels among the three groups (Table 1). The subjects with BD were mostly in symptomatic remission but had statistically more severe mood symptoms [i.e., Young Mania Rating Scale (YMRS) and 17-item Hamilton Depression Rating Scale (HDRS)-17 scores] (Table 1). The BD groups’ cognitive performance was significantly worse than that of the BDsib and HC on the MoCA and MMSE, but there was no statistically significant difference in the WCST performance of the three groups (Table 2).

Table 2. Cognitive performance of the three groups

<table>
<thead>
<tr>
<th></th>
<th>BD</th>
<th>BDsib</th>
<th>HC</th>
<th>F-value</th>
<th>p-value</th>
<th>Post hoc (LSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoCA</td>
<td>25.4 (3.6)</td>
<td>27.7 (1.3)</td>
<td>27.6 (1.9)</td>
<td>5.325</td>
<td>0.008</td>
<td>BD &lt; BDsib, BD &lt; HC</td>
</tr>
<tr>
<td>MMSE</td>
<td>27.6 (2.0)</td>
<td>29.2 (1.6)</td>
<td>29.3 (0.9)</td>
<td>6.915</td>
<td>0.002</td>
<td>BD &lt; BDsib, BD &lt; HC</td>
</tr>
<tr>
<td>Executive function (WCST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent errors</td>
<td>27.1 (13.1)</td>
<td>19.8 (8.0)</td>
<td>23.6 (13.7)</td>
<td>1.947</td>
<td>0.152</td>
<td>-</td>
</tr>
<tr>
<td>Percent conceptual level responses</td>
<td>66.6 (16.9)</td>
<td>76.5 (11.3)</td>
<td>70.4 (19.0)</td>
<td>1.912</td>
<td>0.157</td>
<td>-</td>
</tr>
<tr>
<td>Categories completed</td>
<td>5.3 (1.6)</td>
<td>5.8 (1.1)</td>
<td>5.3 (1.5)</td>
<td>0.824</td>
<td>0.444</td>
<td>-</td>
</tr>
</tbody>
</table>

Values are indicated as mean (standard deviation). BD = bipolar disorder; BDsib = unaffected, healthy siblings of patients with BD; HC = healthy control subjects; LSD = least significant difference; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment; WCST = Wisconsin Card Sorting Test.

*Analysis of variance showed no differences among the three groups, but independent t-tests demonstrated that subjects with BD performed worse than BDsib on different measures of the WCST.

Functional abnormalities in BD and siblings

We conducted an anatomically defined dlPFC seed-based analysis to examine the FC between the bilateral dlPFC and all other voxels in the brain (i.e., the ECN). The patients with BD had significantly higher connectivity between the right dlPFC and right amygdala (x = 18, y = 0, z = −18; cluster size = 30 voxels) and between the right dlPFC and left amygdala (x = −22, y = 0, z = −16; cluster size = 54 voxels) (Fig. 2A). Both findings were corrected for multiple comparisons. There were also some findings in non-a priori regions that passed a voxel-level uncorrected p-value < 0.001 (Supplementary Table 1). However, none of them survived after correcting for multiple comparisons. We then compared the right dlPFC–amygdala connectivity between the three groups and found that the BDsib FC was similar to that of patients with BD; that is, the right dlPFC–bilateral amygdala connectivity was statistically abnormal in the patients with BD and the BDsib alike (Fig. 2B). As compared to the BDsib, the altered FC between the right dlPFC and left amygdala was even more prominent in the patients with BD (p < 0.05) (Fig. 2B). If the seed-based whole-brain analysis was carried out among three groups by using ANOVA, a statistical significance could also be found in the right amygdala (F = 18.15, cluster size = 35 voxels, p < 0.05 after Monte Carlo correction).

The right dlPFC–left amygdala connectivity was negatively correlated with MoCA in the BDsib group (r = −0.499, p = 0.035) and, to a lesser degree, in the BD group (r = −0.487, p = 0.066), whereas a contrasting positive correlation was found in the HC group (r = 0.348) (Fig. 2C). The right dlPFC–left amygdala connectivity was also correlated with high manic severity, as measured by the YMRS scores (r = 0.274, p = 0.045) (Supplementary Fig. 2). If the correlation analyses were
carried out separately in each group, however, there was no correlation between the right dlPFC–bilateral amygdala connectivity and YMRS scores.

Regional GU and clinical correlates

The patients with BD, but not the BDsib, had lower GU in the bilateral dlPFC and higher GU in the bilateral amygdala than did the HC (Fig. 3). In all four ROI, the BDsib presentations were similar to those of the HC. There was a reciprocal relationship between the dlPFC and amygdala because there were strong negative correlations in the GU between the left dlPFC and left amygdala ($r = -0.477$, $p < 0.001$), between the left dlPFC and right amygdala ($r = -0.583$, $p < 0.001$), between the right dlPFC and left amygdala ($r = -0.512$, $p < 0.001$), and between the right dlPFC and right amygdala ($r = -0.562$, $p < 0.001$).

We found that the GU in the bilateral amygdala correlated positively with the YMRS scores in the BD group ($p < 0.05$) (Table 3), if correlation analyses were separately performed in each group. There was also a trend to suggest that GU in the

![Figure 2](image-url)  
**Fig. 2.** Altered prefrontal–amygdala connectivity in bipolar disorder (BD) and in unaffected, healthy siblings of patients with BD (BDsib). (A) Voxel-wise magnetic resonance imaging analysis of seed-based functional connectivity in the executive control network [i.e., bilateral dorsolateral prefrontal cortex (dlPFC) as seeds] showed significant group differences in the right dlPFC and bilateral amygdala between the patients with BD and the healthy control subjects (HC). (B) Direct comparison of right dlPFC–amygdala connectivity among the three groups additionally revealed a similar pattern of altered dlPFC–amygdala functional connectivity in the patients with BD and the BDsib, which was different from the HC (marked in red). The subjects with BD demonstrated significantly more altered functional connectivity in the left amygdala than did the BDsib (marked in green). The asterisks (*') represent a statistically significant difference in the post hoc least significant difference analysis of variance ($p < 0.05$). (C) The altered functional connectivity between the right dlPFC and left amygdala was negatively correlated with Montreal Cognitive Assessment (MoCA) scores in the patients with BD ($r = -0.437$) and in the BDsib ($r = -0.499$), but positively correlated in the HC ($r = 0.348$). *significant correlation ($p < 0.05$); † non-significant trend for correlation ($p < 0.08$); L = left; R = right.

![Figure 3](image-url)  
**Fig. 3.** Glucose utilization in the bilateral dorsolateral prefrontal cortex (dlPFC) and amygdala. (A) The patients with bipolar disorder (BD), but not the unaffected, healthy siblings of patients with BD (BDsib), had significantly lower glucose utilization in their bilateral dlPFC and higher glucose utilization in their bilateral amygdala than did the healthy control subjects (HC). The statistical comparison of the groups was conducted by analysis of variance for each region of interest, and this was followed by a post hoc least significant difference analysis. (B) The correlation analysis revealed a positive correlation in the patients with BD between left-dlPFC glucose utilization and Montreal Cognitive Assessment (MoCA) scores. † non-significant trend for correlation ($p < 0.08$); L = left; R = right; SD = standard deviation. *significant correlation ($p < 0.05$). **significant correlation ($p < 0.005$).
left dlPFC was correlated negatively with the MoCA scores in the BD group ($r = 0.473$, $p = 0.075$) (Fig. 3B, Table 3).

**Discussion**

Strengths and the most important finding

The present study combined PET and rsfMRI to investigate directly the neural substrates of the ECN in patients with BD-I and BDsib. Our findings revealed that functional abnormalities in the dlPFC–amygdala circuit, but not cognitive deficits, could be endophenotypes for BD as the abnormalities were found both in affected and unaffected family members. Moreover, one of the merits of the present functional neuroimaging study is that we examined unmedicated subjects so that the potential effects of medication on the behavioral and neuroimaging results did not bias our interpretation of the group differences.

The most important finding was the altered FC in the dlPFC–amygdala circuit in the BDsib, which was also found in the patients with BD. The results of previous rsfMRI studies have been inconsistent, which might have been because of biases from medication effects (most studies recruited patients taking medications), different mood states (manic, euthymic, or depressed), and methodological differences (ROI or independent component analysis) across studies, which is an issue that was described in a recent systematic review (12). The results of the present study are in line with those of the only previously published rsfMRI study in medication-free patients with BD, in which Anticevic et al. (5) found that euthymic patients with BD-I had disconnectivity between their amygdala and right dlPFC. The present study extended the findings to BDsib. Moreover, a growing body of evidence supports mitochondrial dysfunction as a principal cause of BD, and certain mitochondrial DNA (mtDNA) polymorphisms, such as mtDNA 10398A, have been identified as BD risk genes (28, 29). The present study extended the findings to BDsib.

### Table 3. Correlations between the neuroimaging findings and clinical variables in the three groups

<table>
<thead>
<tr>
<th></th>
<th>BD</th>
<th>BDsib</th>
<th>HC</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>rsfMRI</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional connectivity</td>
<td>Right dlPFC–left amygdala</td>
<td>0.196 (0.444)</td>
<td>−0.050 (0.838)</td>
</tr>
<tr>
<td></td>
<td>Right dlPFC–right amygdala</td>
<td>0.092 (0.754)</td>
<td>0.147 (0.547)</td>
</tr>
<tr>
<td><strong>18F-FDG PET</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional glucose uptake</td>
<td>Left dlPFC</td>
<td>−0.157 (0.575)</td>
<td>−0.344 (0.149)</td>
</tr>
<tr>
<td></td>
<td>Right dlPFC</td>
<td>−0.391 (0.149)</td>
<td>−0.240 (0.323)</td>
</tr>
<tr>
<td></td>
<td>Left amygdala</td>
<td>0.536* (0.039)</td>
<td>−0.135 (0.888)</td>
</tr>
<tr>
<td></td>
<td>Right amygdala</td>
<td>0.666* (0.007)</td>
<td>−0.305 (0.668)</td>
</tr>
</tbody>
</table>

Values are expressed as $r$ (p-value). BD = bipolar disorder; BDsib = unaffected, healthy siblings of patients with BD; dlPFC = dorsolateral prefrontal cortex; 18F-FDG = 18F-fluorodeoxyglucose; HC = healthy control subjects; MoCA = Montreal Cognitive Assessment; PET = positron emission tomography; rsfMRI = resting-state functional magnetic resonance imaging; YMRS = Young Mania Rating Scale. *significant correlation ($p < 0.05$).
(aged 8–17 years) of patients with BD-I exhibit greater right PFC activation in response to positive emotional distracters, and reduced PFC modulation of the amygdala in response to both the positive and negative emotional distracters. Our results extend our knowledge of the abnormal functional connections in unaffected BD family members from task-dependent fMRI to task-free rsfMRI. Furthermore, the identified functional abnormality in the dlPFC–amygdala circuit could be associated with the cognitive functions in the BD families because we found an abnormal pattern of negative correlations between the right dlPFC–left amygdala connectivity and MoCA in the BD and BDsib ($r = -0.420, p = 0.009$). The amygdala has been critically linked to transient emotional response and subsequent subjective emotional experience, which usually follows the enhanced perception of emotional stimuli in patients with BD (2). Abnormal left, but not right, amygdala activity in response to mild sad and neutral faces is a characteristic feature of BD (32). On the other hand, the PFC is thought to play a crucial role in the top-down suppression of the activated emotion and the reappraisal of the stimulus meaning in human subjects, including healthy subjects and patients with BD (2). The altered right dlPFC–left amygdala might be speculated to be a result of a reactive engagement of the right dlPFC in the top-down regulation of the subcortical affective circuitry, and specifically of the amygdala. We found that the GU in the bilateral dlPFC of the BDsib was normal, which suggests that the PFC function was intact in the recruited BDsib. Hence, in the presence of altered dlPFC–amygdala FC, we speculated that a successfully compensatory regulation of emotion from the PFC might protect BDsib from developing BD.

Two limitations might be worth considering while interpreting the present results. First, the sample size was not large. However, the fact that the patients with BD and the BDsib were from the same family, with an age difference less than five years, and that we recruited only patients with BD-I who were clinically stable and without medication use for at least one week ensured that BD and BDsib theoretically had identical mitochondrial genes and a comparable developmental background. The recruitment criteria were to ensure that BD and BDsib have theoretically identical mitochondrial genes and comparable developmental background. Second, in spite being medication free at the time of scanning, all the patients had been taking medication. It is arguable that a history of medication exposure could have contributed to the present findings. However, it is almost impossible to recruit a patient with BD with an identified history of mania who is drug naïve. Furthermore, our main finding of altered dlPFC–amygdala connectivity was present not only in the patients with BD, but also in the BDsib, who had not been taking medication.
Conclusions

There was altered FC with intact GU in the dlPFC–amygdala circuit of the unaffected siblings of BD probands. Such abnormal FC existed both in the BD and the BDsib and could be considered as an endophenotype of BD. Although the identified dlPFC–amygdala functional abnormality in the BDsib was milder compared to that in the patients with BD, this finding highlights the vulnerability of families with BD. Diminished top-down control from the bilateral dlPFC to regulate limbic hyperactivity, as demonstrated by the decreased GU in the bilateral dlPFC in the presence of the dysfunctional dlPFC–amygdala connectivity, might mediate the development of BD.

Acknowledgements

We are grateful to all the patients who participated in the present study. We express our sincere appreciation to the individuals in the Department of Nuclear Medicine of Taipei Veterans General Hospital and the Brain Research Center of National Yang-Ming University for their assistance. The study was sponsored by grants from the Taipei Veterans General Hospital (V101B-019, V100E6-002, V101E6-002, V102E3-006, and VGHUST102-G4-3-1) and the Ministry of Science and Technology (102-2314-B-075-001 and 103-2314-B-075-072-MY3). None of the aforementioned funding organizations had any role in the study design, data collection, analysis, interpretation of the results, writing of the report, or the ultimate decision to submit the paper for publication.

Disclosures

The authors of this paper do not have any commercial associations that might pose a conflict of interest in connection with this manuscript.

References


Supporting Information

Additional Supporting Information may be found in the online version of this article.

Figure S1. Seed-based analysis of functional connectivity with seeds at the bilateral dorsolateral prefrontal cortex (dLPFC).

Figure S2. Correlations of YMRS scores and functional connectivity between the right dorsolateral prefrontal cortex (R.dLFPC) and left amygdala (L.AMG).

Table S1. Seed-based functional connectivity analysis (seeds: bilateral dorsolateral prefrontal cortex).